skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fruytier, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classical Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE-based model architectures have become popular as a means to reduce training and inference costs. There, the partitioning function and the experts are both learnt jointly via gradient descent-type methods on the log-likelihood. In this paper we study theoretical guarantees of the Expectation Maximization (EM) algorithm for the training of MoE models. We first rigorously analyze EM for MoE where the conditional distribution of the target and latent variable conditioned on the feature variable belongs to an exponential family of distributions and show its equivalence to projected Mirror Descent with unit step size and a Kullback-Leibler Divergence regularizer. This perspective allows us to derive new convergence results and identify conditions for local linear convergence; In the special case of mixture of 2 linear or logistic experts, we additionally provide guarantees for linear convergence based on the signal-to-noise ratio. Experiments on synthetic and (small-scale) real-world data supports that EM outperforms the gradient descent algorithm both in terms of convergence rate and the achieved accuracy. 
    more » « less
    Free, publicly-accessible full text available May 23, 2026